Vorwort.-
1 Historische Notizen.- 1.1 Wahrheit und Beweisbarkeit.- 1.2 Der Weg zur modernen Mathematik.- 1.3 Übungsaufgaben.- 2 Formale Systeme.- 2.1 Definition und Eigenschaften.- 2.2 Entscheidungsverfahren.- 2.3 Aussagenlogik.- 2.4 Prädikatenlogik erster Stufe.- 2.5 Prädikatenlogik mit...
číst celé
Vorwort.-
1 Historische Notizen.- 1.1 Wahrheit und Beweisbarkeit.- 1.2 Der Weg zur modernen Mathematik.- 1.3 Übungsaufgaben.- 2 Formale Systeme.- 2.1 Definition und Eigenschaften.- 2.2 Entscheidungsverfahren.- 2.3 Aussagenlogik.- 2.4 Prädikatenlogik erster Stufe.- 2.5 Prädikatenlogik mit Gleichheit.- 2.6 Prädikatenlogik höherer Stufe.- 2.7 Übungsaufgaben.- 3 Fundamente der Mathematik.- 3.1 Peano-Arithmetik.- 3.2 Axiomatische Mengenlehre.- 3.3 Übungsaufgaben.- 4 Beweistheorie.- 4.1 Gödel'sche Unvollständigkeitssätze.- 4.2 Der erste Unvollständigkeitssatz.- 4.3 Der zweite Unvollständigkeitssatz.- 4.4 Gödels Sätze richtig verstehen.- 4.5 Der Satz von Goodstein.- 4.6 Übungsaufgaben.- 5 Berechenbarkeitstheorie.- 5.1 Berechnungsmodelle.- 5.2 Die Church'sche These.- 5.3 Grenzen der Berechenbarkeit.- 5.4 Folgen für die Mathematik.- 5.5 Übungsaufgaben.- 6 Algorithmische Informationstheorie.- 6.1 Algorithmische Komplexität.- 6.2 Die Chaitin'sche Konstante.- 6.3 Unvollständigkeit formaler Systeme.- 6.4 Übungsaufgaben.- 7 Modelltheorie.- 7.1 Meta-Resultate zur Prädikatenlogik.- 7.2 Nichtstandardmodelle von PA.- 7.3 Skolem-Paradoxon.- 7.4 Boole'sche Modelle.- 7.5 Übungsaufgaben.- Literaturverzeichnis.- Bildnachweis.- Namensverzeichnis.- Sachwortverzeichnis.
schovat popis
Recenze